Assoz.-Prof. Dr. rer. nat. Dipl.-Ök. MSc.

Lothar Banz

Address:
Department of Mathematics
University of Salzburg
Hellbrunner Straße 34
5020 Salzburg
Austria

Contact:
Tel: +43 662 8044 5317
Fax: +43 662 8044 137
Email: lothar.banz@sbg.ac.at
Office: 1.011

Lothar Banz


Research Interests



Completed Research Projects

  1. L. Banz, M Hintermüller, A. Schröder: A posteriori error control for distributed elliptic optimal control problems with control constraints discretized by $hp$-finite elements
  2. L. Banz, M. Ilyas, B. P. Lamichhane, W. McLean, E. P. Stephan: A Mixed Finite Element Method for the Poisson Problem Using a Biorthogonal System with Raviart-Thomas Elements
  3. L. Banz, M Hintermüller, A. Schröder: hp-Finite Elements for Elliptic Optimal Control Problems with Control Constraints
  4. P. Bammer, L. Banz, A. Schröder: hp-FEM in Elastoplasticity -- Part 1: A Priori Error Estimates
  5. L. Banz, J. Petsche, A. Schröder: A posteriori error estimates for hp-dual mixed and mixed-hybrid finite elements
  6. L. Banz, N. Ovcharova: Improved Stabilization Technique for Frictional Contact Problems solved with hp-BEM
  7. L. Banz, J. E. Ospino Portillo, E. P. Stephan: Non-conforming FE/BE coupling for two-dimensional electromagnetic problems
  8. L. Banz, G. Milicic, A. Schröder: A basis transformation and its simplifying effect on a class of linear variational inequalities

Peer-reviewed Journal Publications

  1. L. Banz, J. Petsche, A. Schröder: hp-FEM for a stabilized three-field formulation of the biharmonic problem, Computers & Mathematics with Applications 77 (2019) 2463-2488 (URL)
  2. L. Banz, J. Petsche, A. Schröder: Two Stabilized Three-Field Formulations for the Biharmonic Problem, In: Apel T., Langer U., Meyer A., Steinbach O. (eds) Advanced Finite Element Methods with Applications. FEM 2017. Lecture Notes in Computational Science and Engineering, vol 128. Springer (2019) (URL)
  3. L. Banz, J. Petsche, A. Schröder: Explicit and implicit reconstructions of the potential in dual mixed hp-finite element methods, In: Apel T., Langer U., Meyer A., Steinbach O. (eds) Advanced Finite Element Methods with Applications. FEM 2017. Lecture Notes in Computational Science and Engineering, vol 128. Springer (2019) (URL)
  4. L. Banz, J. Petsche, A. Schröder: Hybridization and stabilization for hp-finite element methods with multilevel hanging nodes, Applied Numerical Mathematics 136 (2019) 66-102 (URL)
  5. L. Banz, B. P. Lamichhane, E. P. Stephan: Higher order FEM for the obstacle problem of the p-Laplacian - a variational inequality approach, Computers & Mathematics with Applications 76 (2018) 1639-1660 (URL)
  6. L. Banz, B. P. Lamichhane, E. P. Stephan: Higher order mixed FEM for the obstacle problem of the p-Laplacian using biorthogonal systems, Computational Methods in Applied Mathematics 19 (2019) 169-188(URL)
  7. N. Ovcharova, L. Banz: Coupling regularization and adaptive hp-BEM for the solution of a delamination problem, Numerische Mathematik 137 (2017) 303-337 (URL)
  8. L. Banz, B. P. Lamichhane, E. P. Stephan: A new three-field formulation of the biharmonic problem and its finite element discretization, Numerical Methods for Partial Differential Equations 33 (2017) 199-217 (URL)
  9. L. Banz, H. Gimperlein, A. Issaoui, E. P. Stephan: Stabilized mixed hp-BEM frictional contact problems in linear elasticity, Numerische Mathematik 135 (2017) 217-263 (URL)
  10. L. Banz, H. Gimperlein, Z. Nezhi, E. P. Stephan: Time domain BEM for sound radiation of tyres, Computational Mechanics 58 (2016) 45-57 (URL)
  11. L. Banz, E. P. Stephan: Comparison of mixed hp-BEM (Stabilized and Non-stabilized) for Frictional Contact Problems, Journal of Computational and Applied Mathematics 295 (2016) 92-102 (URL)
  12. L. Banz, A. Schröder: Biorthogonal Basis Functions in hp-Adaptive FEM for Elliptic Obstacle Problems, Computers & Mathematics with Applications 70 (2015) 1721-1742 (URL)
  13. L. Banz, E. P. Stephan: On hp-adaptive BEM for frictional contact problems in linear elasticity, Computers & Mathematics with Applications 69 (2015) 559-581 (URL)
  14. L. Banz, A. Costea, H. Gimperlein, E. P. Stephan: Numerical simulations of the nonlinear Molodensky problem, Studia Geophysica et Geodaetica 58 (2014) 489-504 (URL)
  15. L. Banz, E. P. Stephan: A Posteriori Error Estimations of hp-Adaptive IPDG-FEM for Elliptic Obstacle Problems, Applied Numerical Mathematics 76 (2014) 76-92 (URL)
  16. L. Banz, E. P. Stephan: hp-Adaptive IPDG/TDG-FEM for Parabolic Obstacle Problems, Computers & Mathematics with Applications 67 (2014) 712-731 (URL)
  17. E. P. Stephan, M. Andres, L. Banz, A. Costea, L. Nesemann, C. Lämmerzahl, E. Hackmann, S. Herrmann, B. Rievers: High precision modeling towards the 10^-20 level, ZAMM - Journal of Applied Mathematics and Mechanics 93 (2013) 492-498 (URL)