Ass.-Prof. Dr. rer. nat. Dipl.-Ök. MSc.

Lothar Banz

Address:
Department of Mathematics
University of Salzburg
Hellbrunner Straße 34
5020 Salzburg
Austria

Contact:
Tel: +43 662 8044 5317
Fax: +43 662 8044 137
Email: lothar.banz@sbg.ac.at
Office: 1.011

Lothar Banz


Research Interests



Preprints

  1. L. Banz, J. Petsche, A. Schröder: hp-FEM for a stabalized three-field formulation of the biharmonic problem
  2. L. Banz, B. P. Lamichhane, E. P. Stephan: An hp-adaptive C0-interior penalty method for the obstacle problem of clamped Kirchhoff plates
  3. L. Banz, B. P. Lamichhane, E. P. Stephan: Higher order FEM for the obstacle problem of the p-Laplacian
  4. L. Banz, G. Milicic, A. Schröder: A basis transformation and its simplifying effect on Signorini contact solvers in linear elasticity
  5. L. Banz, J. Petsche, A. Schröder: A Posteriori Error Estimates for hp-dual mixed and mixed-hybrid finite elements
  6. L. Banz, G. Milicic, N. Ovcharova: Improved Stabilization Technique for Frictional Contact Problems solved with hp-BEM

Peer-reviewed Journal Publications

  1. N. Ovcharova, L. Banz: Coupling regularization and adaptive hp-BEM for the solution of a delamination problem, Numerische Mathematik 137 (2017) 303-337 (URL)
  2. L. Banz, B. P. Lamichhane, E. P. Stephan: A new three-field formulation of the biharmonic problem and its finite element discretization, Numerical Methods for Partial Differential Equations 33 (2017) 199-217 (URL)
  3. L. Banz, H. Gimperlein, A. Issaoui, E. P. Stephan: Stabilized mixed hp-BEM frictional contact problems in linear elasticity, Numerische Mathematik 135 (2017) 217-263 (URL)
  4. L. Banz, H. Gimperlein, Z. Nezhi, E. P. Stephan: Time domain BEM for sound radiation of tyres, Computational Mechanics 58 (2016) 45-57 (URL)
  5. L. Banz, E. P. Stephan: Comparison of mixed hp-BEM (Stabilized and Non-stabilized) for Frictional Contact Problems, Journal of Computational and Applied Mathematics 295 (2016) 92-102 (URL)
  6. L. Banz, A. Schröder: Biorthogonal Basis Functions in hp-Adaptive FEM for Elliptic Obstacle Problems, Computers & Mathematics with Applications 70 (2015) 1721-1742 (URL)
  7. L. Banz, E. P. Stephan: On hp-adaptive BEM for frictional contact problems in linear elasticity, Computers & Mathematics with Applications 69 (2015) 559-581 (URL)
  8. L. Banz, A. Costea, H. Gimperlein, E. P. Stephan: Numerical simulations of the nonlinear Molodensky problem, Studia Geophysica et Geodaetica 58 (2014) 489-504 (URL)
  9. L. Banz, E. P. Stephan: A Posteriori Error Estimations of hp-Adaptive IPDG-FEM for Elliptic Obstacle Problems, Applied Numerical Mathematics 76 (2014) 76-92 (URL)
  10. L. Banz, E. P. Stephan: hp-Adaptive IPDG/TDG-FEM for Parabolic Obstacle Problems, Computers & Mathematics with Applications 67 (2014) 712-731 (URL)
  11. E. P. Stephan, M. Andres, L. Banz, A. Costea, L. Nesemann, C. Lämmerzahl, E. Hackmann, S. Herrmann, B. Rievers: High precision modeling towards the 10^-20 level, ZAMM - Journal of Applied Mathematics and Mechanics 93 (2013) 492-498 (URL)